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Abstrnct--Exact solutions are derived for the quasi steady-state creeping flow internal and external 
to two spherical droplets moving along their line-of-centers. Numerical results are presented, 
which include all previous solutions as special cases. 

I. INTRODUCTION 

The hydrodynamics of multiple droplets' motion in an unbounded medium is of funda- 
mental importance and of much interest in numerous engineering applications. When 
the droplets are small and when their relative velocities are low, their motion can be 
described by the Stokes equations. Solutions for the motion of a single droplet suspended 
in an unbounded medium or in a tube have been presented previously for a variety of cases 
(Hetsroni et al. 1970a, b, 1971; Greenstein 1972). However, when the concentration of 
the droplets is of O(10-2), the interaction between them becomes significant. Droplets may 
possibly collide, which makes collision courses of interest. 

There exists substantial literature devoted to the computation of collision etficiencies. 
The most accepted theory of small cloud droplets' collision under electrically, neutral 
conditions, is that of Hocking (1959). He considered the motion of two solid spherical 
particles in a quiescent field, and used Stokes equations to calculate the collision efliciencies 
versus the radii of the particles, with the radius of the larger p&~cle as a p~ameter. 
Hocking stated incorrectly that no collision occurs between droplets smaller than 19/an. 
This error was pointed out by Davis & Sartor (1967) and was subsequently corrected by 
Hocking & Jonas (1970) who showed that collision eiiiciencies are finite for all sizes of 
particles, but vary considerably with the gap between-the particles. All these solutions 
are based on quite arbitrary concepts, such as Hocking's "gap space", since collisions 
between two particles or droplets are impossible to treat purely on the basis of the solutions 
of the Stokes equations. 

Other studies are concerned with the exact solution of the Stokes equations. The only 
systems for which exact solutions have been obtained are the two-sphere system or the 
combination of a sphere and a plane. We shall find here that all these solutions are particular 
cases of the general solution which we present herein. 

I" Currently at the Department of Chemical Engineering, Carnegie-Mellon University, Pittsburgh, Pennsyl- 
vania. 
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Jeffery (1915) solved the motion of two rigid spheres which rotate slowly about their 
line of centers. Later Stimson & Jeffery (1926) solved the axisymmetric problem of two 
spheres translating at an equal velocity along their line of centers. Cooley & O'Neill (1969) 
recalculated the results of Stimson & Jeffery for the more general case when the two 
spheres are not of equal size. In other publications O'Neill and co-workers (1963, 1969, 
1970) solved the asymmetrical motion of two equal spheres and the motion of two spheres 
approaching each other or a solid wall. These, together with the calculations of Goldman, 
Cox & Brenner (1967), complete the solution of the forces acting on two equal solid spheres 
moving in an unbounded medium along their line of centers. For unequal spheres, Davis 
(1969) has calculated the hydrodynamic forces when one sphere is in motion while the other 
is at rest. Bart (1968) solved the problem of a fluid drop settling toward a flat fluid interface. 

Approximate solutions of the motion of two spheres using the method of reflection, are 
described by Happel & Brenner (1965). Hetsroni & Haber (1971) solved the motion of 
two droplets using this method, and computed the trajectories and efficiencies of their 
collisions. However, the convergence of the method of reflection may b-e poor when the 
two droplets are close (and that is when the collision does occur). Most recently, Wacholder 
& Weihs (1972) used the bispherical coordinate system to solve the motion of two 
spherical droplets falling along their line of center. They also computed numerically the 
correction to the Hadamard-Rybczynski drag force. 

In this work we set out to find the general solution for the motion of two liquid droplets 
moving along their line of centers. Our solution will be more general than previous ones 
(Wacholder & Weihs 1972) since it yields the velocity fields for two drops which are 
unequal in size or viscosity. This will be a first part of a more general solution of the arbitrary 
motion of two liquid droplets in an unbounded quiescent incompressible fluid. 

2. S T A T E M E N T  O F  T H E  P R O B L E M  

The problem considered herein is that of two liquid droplets moving along their line of 
centers with low constant velocities V° and Vo, respectively, in an unbounded quiescent 
fluid. The droplets are spherical and their radii are a and b, respectively, as shown in figure 1. 

The flow fields are assumed to be Stokesian and isothermal. The fluids involved are 
homogeneous, incompressible, Newtonian and have constant physical properties. 

Thus, the governing field equations are: 

for the interior of droplet a #°V2Uo = Vp, 

for the interior of droplet b 

for the field exterior to the droplets 

[laJ 

V- U= = 0 [lb] 

~bV2Ub = Vpb [2a] 

V. Ub = 0 [2b] 

/~,V2a = Vp [3a] 

where Ua, P, and Ub, Pb are the velocity and the 

V .  u = 0 [3b]  

pressure fields,/~° and/~b are the viscosities 
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Figure 1. The bipolar coordinate system used in the analysis 

of the droplets a and b, respectively; u, p and #~ are the velocity, pressure and viscosity of 
the field exterior to the droplets. 

The boundary conditions are based on the following assumptions: 

(a) The tangential components of the velocity vectors inside and outside of the droplets 
are continuous on the interface. 

(b) The mass flow through the interface of the droplets vanishes. 
(c) The tangential components of the normal stress vectors of the fluids interior and 

exterior to the droplets are continuous through the interface. 
(d) The normal component of the normal stress vectors have a discontinuity which is 

proportional to the surface tension a. Presently we shall assume that the droplets are 
spherical, and will not use this boundary condition. This implies that the ratio 
I~U/a << 1. A complete discussion of the use of this boundary condition is given 
elsewhere (e.g Hetsroni et al. 1970a, b). 

(e) Far from the droplets the flow field is unperturbed and we can assume, without any 
loss of generality, that the velocity vector vanishes. Thus, the boundary conditions are: 

at the interface of droplet a U, -- u [4a] 

V°. i.(o) -- u.i.(o) [4b] 

l"I(,,)(°) = %,)(°) + a(°) + l,,(°) E4c] 
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at the interface o f  droplet  b Ub = u 

V~ • i.(~) : u .  i . o  ) 

II(..b) = ~(.)o) + %) + i.(b) 

and far from the droplets  u = 0 

[5a] 

[5b] 

[5c] 

[6] 

where i.(,), i,(b) are unit vectors normal to the interface of droplet a and b, respectively; 
~(,)(,) and ~(,)o) are the normal stress vectors interior to droplets a and b; llt. ) is the normal 
stress vector exterior to the droplets, a(,) and a(b ) are the respective surface tensions and 
R1 and R2 are the principal radii. 

3. T H E  S O L U T I O N  

Due to bipolar geometry of the problem, the solution is best obtained in such coordinate 
system. The properties of the bipolar coordinate system arc described by Whittaker & Wat- 
son (1920) (here we shall use the definitions o fp  and ~ as used by Stimson & Jeffery (1926). 
This differs from Whittaker & Watson (1920) by the fact that the symbols p and ~ are 
interchanged). Since the problem is axially symmetrical, the relationship between the 
bipolar coordinates and the cylindrical ones is given by: 

z + ip = ic cot ½(~ + i~) [7a] 

where c is a positive constant; thus 

sin ~ sinh 
P=Ccosh~_c0sC Z=Ccosh~_cos~. [Tb] 

The interface of the two droplets will be defined by ~ = = > 0 and ~ = # < 0. The radii 
of the droplets are given by 

a = c cosech = and b = - c cosech ~ [8al 

while the distance between the centers of the droplets is 

l = c (coth c( - coth 8). [8b] 

The stream function is defined in the usual way, namely: 

h ~¢ h OVJ 
p aC p ~ 

where h = _1 (cosh ¢ - cos C). [I0] 
O 

The equation for the steady state creeping fluid motion is 

E4@ = 0, 
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the general solution of which was given by Stimson & Jeffery (1926) as: 

= (cosh ~ - cos ( ) -  3/2 ~ I,V,(OC~-+I~2(cos C) [11] 
n = l  

where W.(~) = a. cosh(n - ½)~ + b. sinh(n - ½)~ + c. cosh(n + ~)~ + d. sinh(n + ~)~ 

El2] 

and where C~~2(cos~) = C~.l~2(#) is the Gegenbauer polynomial of order (n + 1) and 
degree - l/2. These functions are related to the Legendre polynomials via the relation 

C;" x/2(/z) = [13] 
2n - 1 

The constants a., b., c. and d. are determined from the boundary conditions. The boundary 
conditions, rewritten in the bipolar coordinate system, are at the interface of droplet a, 
i.e. at ~ = or: 

u~ = Ve. i¢ [14] 

u¢--- U.¢ [15a] 

u~ = U,¢ [15b] 

1"1¢~ = z.¢~ [15c] 

at the interface of droplet b, i.e. at ~ = fl 

u¢ = V B . i¢ [ 16] 

u¢ = Up~ [17a] 

u~ = Up~ [ 17b] 

H~ = ~p~. [17c] 

Recall that the points ~ = + oo are inside the droplets. Therefore, in order to maintain 
the finiteness of the solution at the centers of the droplets, we must have for droplet a 

and for droplet b 

a . = - b ,  and c . - - - - d .  [18] 

a . - - b ,  and c . - - - d . .  [19] 

The stream functions interior to droplets a and b and exterior to them thus simplify to: 

~k, = (cosh ~ - cos ~)-z/= ~, W~,(~)C;+II2(It) [20] 

~/,p = (cosh ~ - cos C) -~/2 ~, W~(OC2+l lzO)  [21] 
n = l  
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where 

¢, = (cosh ~ - cos O-  3/2 ~ W.(~)C.J~'(u) 
n = l  

W:(~) = a~ e x p [ - ( n  - ½)~] + C~, e x p [ - ( n  + ])~]; ~ > 0 

W~(~) = a~ exp[(n - ½)~] + C~ exp[(n + ~)~]; ~ < 0 

[22] 

[23] 

[24] 

and where W.(~) is defined by [12], which satisfies automatically the boundary conditions 
far from the droplet, i.e. [6]. 

In order to proceed with the solution and determine the coefficients A'., C~., A. p, etc., the 
boundary conditions are expressed in terms of the stream function (Appendix A). 

Now we substitute [20], [21] & [22] into the boundary conditions, [A1]-[A4] and obtain: 

For droplet a, i.e. at ~ = 

w.(~,)Cz+~2(u) = ~ w:(~)c.JI2(u) [25] 
. = I  . = I  

dW.(~) 
.=I d~ .+I u'p [26] 

~. sin2 ~ • 
.=, W~(~)C~'~2(#) = - 2(cosh ~ - cos ~)I/2 V. C2 [27] 

V. cosh ~ sin2( 3sin2 ~-- sinh2-~ 1 
= (i - 2~)V~C' t4( cosh ~ ---~--oos2),/2 - 8(cos'h~ - cos ~),/2j [28] 

where 2. -- #°/#, is the ratio between the viscosity of droplet a to that of the external field. 
For droplet b, i.e. at ~ = fl, one obtains an identical set of equations, with fl replacing 
everywhere. 
To continue the solution we express the right-hand side of F27] & [28] (and the equivalent 

equations for ~ = fl), as an infinite sum of Gegenbauer polynomials C~'+I~2{9) (Appendix B). 
Then, using the orthogonality properties of the Gegenbauer polynomials, eight equations 
are obtained for the eight unknown coefficients a., b., c., d. (of the continuous field) 
A. ~, C~., A. p and CP. (of the droplets). Once these coefficients are obtained, the solution of the 
flow fields is completed and the stream functions-Ill] & [12] are known, and it is not 
necessary to write down the details. However, in order to compute the terminal settling 
velocities of the droplets, it is necessary to compute in detail the drag force acting on each 
droplet. 

4. T H E  D R A G  F O R C E  

It was shown quite generally by Stimson & Jeffery (1926) that the drag force of droplets 
(spheres) a and b are given by: 

F. = 2~/(2)~#. ~ (a. + b. + c. + d.) [29] 
¢ . = 1  
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2x/(2)nP, 
F~ = ~ (a. - b. + c. - d.). [30] 

C n = l  

After rather tedious algebra the sums of the coefficients in [29] were computed. The 
drag force on droi~let a is thus given by: 

F. = -6np,a[AuV, + A~pVb] [31] 

~/2 sinh ~ ~ 60 + 2,31 + ).b62 + 2) ,63 
w h e r e  Au 

= 3c ,= 1 A [ 3 2 ]  

~/2 sinh ~ ~ 30 + 2o~1 + 2b~2 + ).,2~33 
[33] 

3c ,,.z"a A 

The coefficients 6o, 61, etc. are defined in Appendix C. The two coefficients A= and A,p 
were evaluated numerically and the results are depicted in figures 2-5. 

In figure 2 the values of + A= and -A,¢  are shown versus the ratio between the radii 
oftbe droplets p --- a/b, for the case when their viscosities are equal and very small compared 
to that of the infinite medium (e.g. air bubbles in viscous liquid), and for the ease when the 
ratio between the radius of one droplet to the distance between them is rather small, i.e. 
a/l = 0.05. Notice that A g 2/3 as p --+ 1, as is indeed expected. 

In figure 3 the values of + A,~ and -A ,p  are depicted versus the ratio between the radii, 
for the ease when the viscosities of the droplets are equal to that of the surrounding fluid. 
Here the distance between the droplets was taken to be 10a. 

In figure 4 the values of + A,,, and - A~ are plotted versus the ratio of the viscosity of 
the droplets (assumed equal, i.e. 2, -- ~.~ = 2) to that of the infinite medium. Here the 
droplets were taken to be of the same size, i.e. a = b and the distance between them is a 
parameter. 
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Figure 2. The correction factors - A , ,  and '~,e in the equation for the drag force [31], versus the ratio between 
the radii p. The viscosities 2° ;,b -- 0 and the radius/distance ratio ( a / I )  = 0.05. 
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Figure 3. The correction factors -A ,=  and A=n in the equation for the drag force [31], versus the ratio between 
the radii g. The viscosities of the droplets are equal to that of the medium ~., = ;.s = 1 and the radius/distance 

ratio (a/I) = 0 . 1 .  

In figure 5 the correction factors + A== and -A=# are shown versus the ratio between 
the radii. Here the viscosity of the droplets was taken to be 67 times that of the surrounding 
liquid (as in the case of water droplets in the atmosphere). The distance between the 
droplets was 3.3 times the radius of one droplet. Notice that as p -) oo, i.e. one droplet 
becomes very much larger compared to the second one, + A= --, 1 and A=# --, 0, as indeed 
is expected from other solutions. 

In all the figures it can be observed that the correction coefficient A= of one drop is less 
affected by the second drop than the correction coefficient A,#. Also, both correction 
coefficients increase without bound when the two droplets come closer to each other. 
When the two radii are equal, the velocities are equal and the sum of the two coefficients 
is bounded (as discussed further in Section 5). However, for unequal drops, the settling 
velocities are unequal (i.e. V= ~ Vb) and the drag force increases without bound. 

- 3 . 0 ,  

-Aa= a b=p=].O 
-A,e k== k a =- k 

~=-2.c / 
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n 3 " ~ ' - - ~ ' - ' ' r ' r ' r ? = 7 ~ ' 7 "  i , i , , , ' i ( ~  ' 
10 i 102 

>. 

Figure 4. The correction factors -A,= and A=a in the equation for the drag force [31], versus the viscosity ratio 
;.. The radii of the droplets are equal and the distance between them is a parameter. 
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Figure 5. The correction factors - A u  and A,p in the equation for the drag force [31], versus the ratio between 
the radii of the droplets p. The viscosities are equal ;,° ffi )-0 = 67 and the radius/distance ratio (a/I) ffi 0.3. 

Notice that the drag force computed herein and given in [31] is the most general one, 
and includes all previous solutions as special cases. Thus, when fl = 0 (i.e. b = oo) our 
solution reduces to that of Bart (1968). When the droplets are equal  i.e. a = b and 3.o = J-b, 
our solution simplifies to that of Wacholder & Weihs (1972) (there is some numerical 
discrepancy, which we believe is caused by an error in their calculations); when 2, = ;.~ = 
and a = b, the results of Stimson & Jeffery (1926) and Goldman et aL (1967) are obtained; 
when one droplet vanishes, i.e. b = o or I/b ~ oo [31] simplifies to the celebrated Hadamard-  
Rybczynski solution. 

One limiting case of particular interest is discussed in the next Section. 

5. T W O  E Q U A L  D R O P L E T S  IN C O N T A C T  

For two equal size droplets the coefficients b. and d. in [29] and [30] vanish and the 
forces are equal. The force can then be conveniently written as 

F D = - 6~#~VA' [34] 

where a is the radius of any one of the droplets and A' is a correction factor. This correction 
factor was computed by Fax6n (who corrected a numerical error in Stimson & Jeffery's 
work) for two solid spheres. Fax6n (1927) also computed A' for the limiting case when the 
two spheres touch. 

For two equal-size droplets in contact but not of same viscosity we express the drag force 
in the general form 

. . 2 / 3  + 
F D  = - oTr#,a~ . . . . .  A [35] 

1 + ; . ,  
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where  the coefficient A is defined 

I + 2 ~  i ~ ' °  C o + 2 o C t  + 2 b C 2  + 2 o ) . b C 3 j  
. . . . . . . .  J o  ox  [36] 

A = 2/3 + 2, ]-2 Ao + ('~'a + ~'b)'41 + 2o2bA2 

where  

Co = 64e -x  sinh 2 x(cosh x + x e  ~) I37a] 

C t = 8e2~(2x 2 + 2x + 1) - 8e-2~(2x - 1) - 8e - ' x  - 48x 2 - 32x - 8 [37b] 

C 2 = 8 e - 2 X ( 2 x  2 - 2 x  + 1) + 8e2X(2x + 1) - 8e - 4 x  - 48x 2 - 32x - 8 [37c] 

C3 = (16 + 32x2)sinh 2x + 32x cosh 2x + 8e - ' x  - 64x 3 - 64x 2 - 32x - 8 

[37d] 

A o = 4 sinh 2 2x 

A t = 2 s i n h 4 x - 8 x  

A 2 = 4 sinh 2 2x - 16x 2. 

[37e] 

[37f] 

[37g] 

The coefficients Co, C t ,  C2, C3, Ao, At  and A 2 w e r e  ob ta ined  by using the equat ions  in 

Append ix  C, with ct --, 0, fl --* 0, net - x. Express ions  of the o rder  nP0# with p < q were 

neglected and the s u m m a t i o n  was rep laced  by in tegra t ion  at the l imit  ~---, 0. The  co- 

efficients A for var ious  values of 2, are given in table  1, for the case when 2o = 2b- The  

c o m p u t a t i o n s  in the table  were done  to accuracy  0 ( 1 0 - s ) .  

Table 1. Correction factor for the drag force in [35]. 

2 A 2 A 

0.0 0.69309765 5.0 0.65323899 
0.5 0.67778645 7.0 0.65119544 
1.0 0.66967093 9.0 0.64997234 
1.5 0.66474567 1 5 . 0  0.64814263 
2.0 0.66145397 3 0 . 0  0.64667191 
2.5 0.65910276 5 0 . 0  0.64605811 
3.0 0.65734077 I00.0 0.64558767 

1000.0 0.64514946 

Notice that as ~. ---, ov (i.e. the droplets approach solid 
spheres), our solution converges rapidly to the value of 0.645 
given by Fax6n. Notice also that since the variation in A is 
rather small (in the order of 6 per cent), the change in A' in 
[34] is dominated by the term [(2/3 + 2)/(1 + 2)]. 

A c k n o w l e d g e m e n t - - T h i s  research was suppo r t ed  by a g ran t  from the N a t i o n a l  Counci l  

for Research  and D e v e l o p m e n t  (Israel). 
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Sommadre--Des solutions exactes sont obtenues pour Ic r6gime d'~'~oulement fluant quasi perma- 
nent ;i rint6rieur et ~ rext6rieur de deux gouttelettes sph~riques en mouvemcnt le long de leur ligue des 
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¢¢ntres. Des r6suhats num6riques sont pr6sent6s, lls constituent une g6n6ralisation des toutes les 
solutions pr~6dents. 

AmumlI--Ks werdcn genaue Gleichungen Far den inncn und aulkn an zwei kugelf'6rmigcn TrOp- 
fchma quasi im Beharrungszustand bcstehendcn Kri~clatlul~ abgeleitet, welche sich entlang ihrer 
Linie dcr Mittelpunkte bcwegma. Ks werdcn zahlenmll~igc Ergebnissc gebracht, welche aUe 
friihercn L6sungcn als Spczial~lle einschlie~en. 

Pe31oMe---Haxo~LqT TOtmM¢ pemeH~ ~ XBa3HcTaH~oHapHoR ycraaoematuetlca nonapmcrH 
C BHyTpOHHe~ H HapyacnOR c ' r o p o H  nnyx rpyrnbLX xane, aex a a ~ r r a m u m x c a  Baoab CSOaX 

ueh'TpOU. Hpe~IcTasnamr qHc.aeHm~e pe3yn~.rar~, s~c~mqamuIHe gag cneuaas~ma¢ 
c.nyqaR ~.e npomm~e pemeHHa. 

A P P E N D I X  A 

Boundary conditions 

Expressing the boundary conditions, [15a, b] in terms of the stream function defined 
by [9], one obtains homogeneous equations in ~, at the interface of droplet a, i.e. at ¢ = =: 

a~la~ = a#/=/a~. 

Expressing [14] in terms of the stream function, at ~ = ~: 

h a ~ = =  V = ( k . i , )  = V=(i¢. Vz )  V=[haZl i-cosh~tcos( 
pa-~ = IaG/ = ~cosh=-cos 

[A-I] 

[A-2] 

rI¢~ = i~ .H. i~  = i ¢ . [ - p l  + #(Vu + vur)]i~ = ~h[u¢,;- hu~(~).~ 
Finally I'I¢~ =/ah(u¢,~ + u~.~) + -~ (u~ sinh ~ + u~ sin O. 

r, / ,~;.-J 

v,c F, cosh s .  .1 
for which a~ L(cosh ~t - cos 02 - (cos--~-~ - cos 03J 

by simple integration $==-V=c21 - cosh= sinh2 ~t " t 
(cosla ~ ~ cos 0 + 2(cosh = - cos 0 2 + d 

where d is a constant of integration. Here we choose d = ½, without any loss of generality, 
and get 

V 1 - - C O S 2 ~  1 
¢ '&  =" = - V'c2 L2(co~l~ = - ~o-s ~.) i j  [A-a ]  

An idcntical equation is obtained for the stream function interior to droplet b, i.e. ¢/B 
at the interface ~ = r, when fl replaces ~t everywhere in [A-3]. 

To express [15c] & [17c] in terms of the stream function, first write the stress in terms of 
the velocity: 
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A similar expression is obtained for %e~ (i.e. the stress interior to droplet a), when U, 
replaces u and #~ replaces #, viz. 

~,~ = #,h(U,e.~ + U~.e) + ~(U~; sinh ~ + U,e sin 0. 
c 

An identical expression is obtained for x#¢~, when # replaces a everywhere. The comma 
between the subscripts denotes differentiation. 

Substituting the last two equations and [9] into [15c], and making use of [A-l] through 
[A-3], one obtains at ~ = u: 

~ 0#2 .] + c(l - 2.)[ - ~s inha  + -~" 

+ (1 - 2=)p o ~ /  la~2 -/,, ~-~-} - 0. 

Substitution of [Tb], [20], [221 & [A-3] into the above equation yields, after somewhat 
lengthy algebra, at ~ = ~: 

F cosh = sin 2 ~ 3 sin2 ~ sinh2 = l 
= (1 - ~.,)Y,C 2 L4 (coTh ; -  ~ '~ ) , /2  - 8 ( c o ~  --~os Osd]" [A-4] 

Similar equation is obtained at ~ = #, when B replaces = everywhere in [A-4]. 

APPENDIX B 

The right-hand side of [27] & [28] is to be expressed as in infinite sum of Gegenbauer 
polynomials C~+~ 2. First we avail ourselves of the general expression (Whittaker & Watson 
1920): 

(1 - 2hp + h2) -" -- ~ h"c:~). [B-1] 
r im0 

Differentiating and putting v = +½: 

(1 - #2)2  

(I - 2h# + h2)  3/2 ~-- ~'Ln(n + 1)(n + 2)C~-+1/2~) [B-2] 
n=O 

( 1 - # 2 )  1 ~, n - 2 ( n -  1)n(n+ 1) (n+2)  
and (1 - 2h# + h2) 5/2 - 3 ~ h (C~ 1/2 _ C~-+12/2). [B-3] 

. -o (2n + 1) 

Setting h = e -=, [27] & [28] can be expressed as infinite sums of Gegenbauer polynomials 
C~.~ 2. Identical procedure is followed for the second droplet, where # replaces = every- 
where. Using the orthogonality properties of these polynomials, eight equations for the 
eight unknown coefficients (viz. a,, b,, c,, d,, A:, ~ ,  A~, C~ are obtained as follows. 
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a.  cosh(n  - ½),t + b. s inh(n - ½)ct + c. cosh(n  + ~)~t + d. sinh(n + ~)~ = Ktf~(~t) [B-4] 

a .  cosh(n  - ½)8 + b. s inh(n - ½)8 + c.  cosh(n  + {)8 + d. sinh(n + {)8 = K t f . ( - 8 )  

[B-5] 

A~e-(n-i/2)~ + C~e -tn+ a/2)a = Ktf~(oO [B-6] 

A{e( .  - t/2~a + Caner.+ 3/2)B = K i r a ( -  fl) [B -7 ]  

(n - ½ ) [ a .  sinh(n - ½)~t + b. cosh(n - ½)~t + A~e - t ' -  1/2~] + (n + ~)[c.  s inh(n + 2a)ct 

+ d. cosh(n  + ~)~ - C~e 1"+3/2~] = 0 IB-8] 

(n - ½)['a. s inh(n - ½)fl + b. cosh(n  - ½)fl - Aa~e ~"- t/2)B] + (n + ~)[c.  s inh(n + a2) fl 

+ d.  cosh(n + {)fl - C~,e ~"+a/2~B] = 0 [a-9] 

(n - ½)2[a. cosh(n  - ½)~t + b. s inh(n - ½)~t - X,M~e -~"-  ~/2~ + (n + 2~)2[c. cosh(n + ~-)ct 

+ d. sinh(n + ~)~z - ~.aC~e -(n+a/2~] = ( 1  - A a ) K 2 g n ( ~ t )  I'B-10] 

(n - ½)2[a. cosh(n  - ½)fl + b. s inh(n - ½)fl - 2 v A { e  t" -  t/21#] + (n + ~:)2Ec . cosh(n + ~)fl 

+ d.  sinh(n + 2~)~ - .~b,~.~ ~ rB,'("+3/2)aq~ = (1 - J.b)K2gn(--fl) [B-11] 

c 2 n(n + 1) [B-12] 
whe re  K t  = x/2 (2n - l ) (2n + 3) 

C 2 

=  542 .(n + 1) [B-13] 

f.(~t) = U , [ ( 2 n -  1)e -t"+3/2)" - (2n + 3)e - t"-1/2) ' ]  [B-14] 

g.(~t) = U,[(2n + 3)e -t"+3/2~" - ( 2 n  - 1)e - t " - l / 2 n ]  [B-15] 

and  s imilar  func t ions f . (  - 8) and  g.( - 8), wi th  8 rep lac ing  ~t eve ryw he re  in [B- 14] and  [B- 15]. 

A P P E N D I X  C 

T h e  coefficients  in [31] are  def ined  as fol lows:  

6o = 4(2n + 1)2Kt[(2n + 3)s inh(n  + 2~)(ct - fl)e -~"-  i/2)(~+#) 

- (2n - 1 ) e  - ( n + 3 / 2 ) ( ' + 0 )  sinh(n - ½)(c~ - fl)] [C-1] 

So = 4(2n + 1 ) 2 K x [ - ( 2 n  + 3 ) e - t " - i / 2 ) ( ~ - a ) s i n h ( n  + ~)(ct - [~) 

+ (2n - 1)e -(n+3/2)('-#) sinh(n - ½)(~ - fl)] [C-2] 

31 = - ( 2 n  + 1)2K~[2(2n - 1)(2n + 3)e -~2"+ t)# - (2n + 3)2e - t " -  t/2)~'+#)cosh(n + ~)(~t - 8) 

- (2n - 1)2e -("+ ~/~( '+#)cosh(n - ½)(:! - fl) - (2n - 1)(2n + 3)e - t " -  ~/2~t,+#) 

sinh(n + 2~)(ct - 8) - (2n - 1)(2n + 3)e - t "+a / z ) t '+a~s inh (n  - ~2(~t - fl)] [C-3] 

~ = - (2n + 1)2Kt [ - 2(2n - 1)(2n + 3)cosh(28)  + (2n + 3)2e-  t"- ~/2)t,- #~cosh(n + 2~)(ct- 8) 
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+ (2n - l )2e-  ~" ÷ a /2 . . -  #~cosh(n - ½)(~ - jS) + (2n - 1)(2n + 3)e-  ~ -  1,,2~l~- #~sinh(n + ~)(~ - ~) 

+ (2n - 1)(2n + 3)e-~"÷ 3/2.~-alsinh(n _½)(~ _ ~)] [C-4] 

32 = - (2n + 1)2Kl[2(2n - 1)(2n + 3)e-~2. + 1) ._  (2n + 3)2e -¢"-  1/2)~. + #~coshln + ~)(e - ]~) 

- ( 2 n  -1 )2  e-~"* 3/2"'+ a) cosh ( n - ½  ) ( ~ -  ~) + (2n -1 ) (2n  + 3)e-~"- l/2)~'+ #~sinh(n + ~)(~x- ~) 

+ ( 2 n -  l)(2n+3)e-1"+3/2"~+B~sinh(n-½)(o~-B)] [C-5] 

~2 = - (2n + I)2K 1[ - 2(2n - 1 )(2n + 3)cosh(2e)  + (2n + 3)2e-  ~" - 1:2~1,- B~cosh(n + ~)(~ _ ]?) 

+ (2n - 1)2e- TM ÷ 3, '2. .-  BI cosh (n - ½)(~, - ]~) + (2n - l)(2n + 3)e-  ~"- 1/2~.- p~ sinh(n + ~)(~, - B) 

+ (2n - 1)(2n + 3)e-  ~" + 3:2~,- P)sinh(n - ½)(~ - B)] [C-6] 

6.~ = 2 ( 2 n +  l )2Kl[ (2n  - 1)(2n + 3)(e -t2"÷ l~a -  e-~2"+ 1 ~ ) - ( 2 n  + 1X2n+ 3)e -~"- 1/2...#~ 

sinh(n + ~ ) { e -  ~ ) - ( 2 n  + 1 ) ( 2 n -  1)e-~'+ 3 /2~ '+#)s inh(n -  ½)(~-  ~/)] [C-7] 

'~3 = - (2n + 1 )2K ~ [ - 2(2n - 1 )(2n + 1 )(2n + 3)s inh(e - ~)cosh(~, +/~) + (2n + 1)3sinh2(e - /~ )  

+ 2(2n + 1)2 cosh 2 ( ~ - / ~ ) -  8e-~2"+ n ~ ' - # ) -  2(2n - 1)(2n + 3)] [C-8] 

A = (2n + 1)214 sinh(n - ½)(~, - fl)sinh(n + ~)(e - 8) + (2, + 2~)[2 sinh(2n + "1)(- - / ~ )  

- ( 2 n +  l )s inh 2 ( - - / ~ ) ]  +2°; ,~[4s inh2(n+½)(e-[~)- (2n+ 1)2sinh2(~,-B)] [C-9] 


